DRAFT

TACTICAL CONTROL SYSTEM

DATA SERVER
INTERFACE DESIGN DESCRIPTION

VERSION 1.0

April 1997

Prepared by:

NAVAL SURFACE WARFARE CENTER, DAHLGREN DIVISION
Strategic and Strike Systems Department (K63)
Dahlgren, VA 22448

DSIDD DRAFT Version 1.0

Table of Contents

oo oL O OP PR OP R 1
I o L= 01] = o o ST UTOTPORSTPRRN 1
1.2 SYSLEM OVEIVIEWveeeeiete sttt ettt e e ste s teste s teste et esee s e testesteeseaseeseeseentesseateateaseaseensensensesesteseentenseenseneensatesrens 1
1.3 DOCUMENT OVEIVIEW......ceeeueeeite ittt eteeiee ettt besae s e e ae e e e eese e ke saeebesheeaees s e s e b e sbeeb e eheeseeme e s e besbe et e eneeneeneennebeseeas 1

2. REFEIENCE DOCUMENESttt sttt ettt sttt be bt e e e e e se ke s et ehe e heeae e e e se e besb e eb e e aeehe e e e s e ke sheebeeaeeneensennebesrens 2
B Y L= VS = F= 0 L 2
2.2 TCS DOCUMENES ...t eueeeteeeseesseereesesssesseesseesseeaseesseeaseeseease e seeabeaaeesaeesRe e 1he e aRe e e e e an e eReeab e e ab e e b e e Eeennesnnesnnenreenneenneenns 2

G I 1 1= 7= o= 1D =S oo SR 3
3.1 Interface ldentification and DIQraIMS..........ccieierieiee e e e ee e s re e sreesaeeneetesneesnaesreesreeneenns 3
I D - = Y 0= PSR PP 3

I Y o | 1Y o< USSR 3
I = (SRl Y/ o= USRS 4
I 1 g =g Tor N I o USRS 4
A N O o= ot QD T = I/ o= SR 4
G SN O | oot G 1Y/ o= S 5
326 GENENIC POINLEN ...ttt ettt ettt s e e bt bt he e st e e et s et eh e e bt eheeae e e em b e b e nbenbesbeebeeneene et e neenbeee 5
O I 0o = | T TSRO PO PROP RSP 5
B (o] g 0o /== PPV UR RSP 6
3.5 Startup and SNULAOWN SEIVICES.ccuieiieiecieete sttt et e e sre e ste et e e e e saeeste e te e teentesnsesteessesnsesneesaeesreenseenns 6
N I 1 ol (= T o) o SOOI 6
R B IS Y = < SOOI 6
R O 1= oLl = TSP 7
3.5.4 SYNCNIONIZBLION......c..eiveeieeiiete sttt b et b e bbb e it e s e e b e eb e b e saeeh e e aeeae e b e b e nbesbeebeeaeeneeneeneenbesee 8
I 0 1H 1o (011 o I OSSPSR 8
3.6 GGIOUD SEIVICES.....cteeeetieieeueete sttt ebe et eie et e s e e besaesb e e st eae e e e e e besaeeb e e Rt e et e ae e s eabeoEeebeeReeheemeeme e beseeebe s Rt ebeeneenseneeseenbas 9
3.6. 1 CrEaEE GIOUP ... et eueteueieueeteetee e eitesieesaeesheesse e et eae e eseeebe e be e s b e eabeeaeesae e sheeeae e et e et eae e ebe e b e e nbeebeenbeeasesanesaeenneenseenns 9
3.6.2 DESIIOY GIOUP......ceueiueeteeti et et stee st e st e sbe s teseesaeesheesae e bt easeeaeeeb e e b e e b e e beeaeesaeesaeesheeeabeeaeesbeesbeesbeebeensesnnas 10
G R o [] {0 U o TSRS 10
N BT o =] o U o USSR 11
N S gl F= o €] (o 1U o USSR 12
3.6.6 FING ODJECE BY INBIMIE.......eiitiitiitiiiieiie ettt bbbt re e b e et b e sb e s st es e e e e beseesbesbesaeese e e anseneeseeneas 12
3.6.7 FING GrOUP BY NAIME.....c..eiieiiie ittt et e s e et et eb e s b e e st e se e e e sbesaeebe e e eneeneesbeneas 13
3.7 ODJECE SEIVICES ...ttt ettt h et a et e s e e besb e e b e s aeea e et e e e beseeeb e s aeeheeae e s et e e e besbeseeebeeneaneeneaeanbesaeas 13
A R O3 (T @ o 1 o AR 13
A A B 1= ({0 A ® o)1= ot AR 16
G O o< o: S STRR 16
A €T o] 1= o ST 17
3.7.5 Request Ky fOr ODJECL ..ottt e b ettt se e b e s ae e e e e eeseeseeeeas 18
3.7.6 REIEASE K@Y TOF ODJECT ...ttt be e b be s aeene e e e eeseeseeenas 18
3.7.7 SUDSCIIDE 1O ODJECL ...ttt bbbt bbb et bbb e 19
3. 7.8 UNSUDSCIIDE 10 ODJECE........cueevitieetistieeterte ettt ettt bbbt b bbb et bbb e 19
3.7.9 Gt ODJECE GIOUD ...c.veueeuetieeteetest ettt sttt ettt s bbb e bt b e e e bt b e e e bt b e s e bt e b e e et e b e e et st e st nbe e 20
A O T @1 ok == | ST 20
IO TS @1 ol D= = o] 1= SRR 21
A T O T ok S = TSRS 21
3.7.13 Object RECAIVEI Valil DELA.......ceeeeuerieieriirieiritsteeee ettt b b st b b e 22
3.7.14 ObjeCt RECAIVEI WIHTE KEY ..ottt bbbt n e 23
3.8 COMIMON SEIVICESueeueeeeie st etesie et eee st e teseeetesseeseeseeseeneeseeabesseeseeseeneeneeseeateaaeeseeseeneenseseeseseesaeeseeneensensensesensnens 23
3.8 L REGISLEN CADBCK ..ottt bbbt b et n e e 23
RS I €T AV OSSR 24
ST €T = (o] o o L= RS 24
ORI S s UL g D - L OSSP 25

DSIDD DRAFT Version 1.0

3.8.5 G USEN DBIA. ... e eueeveeiueetirteie ettt sttt h bt h bbb s bt s e b e st b e b et bR et e b e e e Rt b e e e ne bt b e 25
3.8.6 SEL TGO EVENT ..ottt bbbt bt b e st b e et b et b et b e 26
3.8.7 G THIOUEN EVENL......ieieiitieeiite ettt bbb b bbbt bbb e e ne st et b e 26

3.9 MISCAIIBNEOUS SEIVICESueiteeeieite sttt sttt ettt et b e bbbt b st bt b se bt b e se e bt e b e s e eb e e b e st s b e e ebesbe e ebesee e ebesreneas 27
3.9.1 GEE RECENT GIOUD. ...eeeeueeurertiereeteeie ettt sttt sttt e e e sr e s r e bt et e e e e e s e s e e e r e eb e s st es e e e e s e st e sr e e renbeeb e e e e nennenrenrs 27
3.9.2 GEL RECENE ODJECLe.eiueetieieeetert ettt ettt b et a b bbb se b e b et s bt b et e b e e e st s b e e e ae st et st b e 27
3.10 Representation and Description ENGiNg (RADE)co.ciiiiciiireene ettt 28
4. ReqUIrEMENES TraCEBDITTY .. .c.eiveieeeeeireeeete bbb et b et b e et b e et b e et b e b e 29
L L0 TP PP 30
5.1 OVEIVIBIW ...ttt sttt b etk e et b e e h e bt se e st e bt 4 e e Rt eb e 4 E e s e e b e A E e R e e bt HEeh e eE e AE e R e eb e eb et eb e s b et ebe s e e e ebenr e e ebenre e 30
BLL GENENEL ...ttt bbb E e h Ak h R R R E £ R R e E Rt bR Rt b e Rt b et b e 30
5.0 2 GFOUPS. ...ttt sttt h et s et bbb e s et e e R AR eR e e R e s e AR e R e AR SR e R e e e AR e R e e R e R R R Rt R e e e nenrenrenrs 30

ST R O o 1= L F OSSOSO PR SRUR PSP 30
5.1.4 Normal EVENE HANAINGcoviiiiiriiieiiriier et bbb b 30

5.2 TEOrY Of OPEIGLION........ccuiieeiiitirietiete ettt ettt et b e st b et s b e b st bt s b e st e bt s b e seeb e eb e s b e e ebesbe e ebe st e e ebesaeneas 30
B2 L TNEEVENT IMOEL ...ttt bbb bbb bbb et bbb e 30
5.2.2 ODJECE WITTEN ..ttt bbb bbb bbb bt b e et st e et b e 31

5. 2.3 ODJECE REAUES.......cuieieeteeeet ettt b bbbt b ket b bbb bt b e ae bt b e 31
5.2.4 ODJECE SUDSCITDAN ...ttt bbbttt bbbt b b ae b e et b et st e 31

5.3 The Subscription (Automatic Data FOrWarding)c.cuveerereirereiene et st 31

Lo o (010170 1= T T TSP PSP SPPRP 32

DSIDD DRAFT Version 1.0

1. Scope

1.1 Identification

This document provides an Interface Design Description (IDD) between the Data Server (DS) computer
software component (CSC) and client application CSCs for the Tactical Control System (TCS). The
interface described herein is referred to as the DS Application Program Interface (API). This IDD presents
the DS API with complete descriptions and specifications for each procedure and/or function cal (i.e.,
service) available to client applications from the DS.

1.2 System Overview

TBD

1.3 Document Overview

This document is divided into five major sections. The following is a summary of the content of each major

section.

Section 1: | dentifies the scope of this document.

Section 2: Provides alist of all documents referenced or used in the creation of this document.
Section 3: Provides detailed information on the interface design.

Section 4: Provides traceability of the interface design to software requirements.

Section 5: Provides genera information that aids in the understanding of the DS and the use of the

DS API.

DSIDD DRAFT Version 1.0

2. Reference Documents

Copies of the specifications, standards, drawings, and publications listed in the next two subsections that are
required by suppliers in connection with specified procurement functions should be obtained from the
contracting agency or as directed by the contracting officer.

2.1 Military Standards

The following documents listed below form part of this specification to the extent of the organization and
format of this document.

DOD-STD-498 Military Standard, Software Development and Documentation

DI-IPSC-81436 Interface Design Description

2.2 TCSDocuments

The following documents listed below form part of this specification to the extent of understanding the
requirements the DS and its API fulfill to accomplish their task. In the event of conflict between the
documents referenced and the content of this specification, the contents of this specification shall be
considered a superseding requirement. If the specified revision of the document is not listed, the current
approved issue of the document applies.

NSWCDD/96-XX/XXX TCS Software Design Description

NSWCDD/96-XX/XXX TCS Software Requirements Specification

NSWCDD/96-XX/XXX TCS Software Development Plan and M ethodology

NSWCDD/97-XX/XXX Interprocess Communication Interface Design Description

DSIDD DRAFT Version 1.0

3. Interface Design

3.1 Interfaceldentification and Diagrams

The Data Sever API consists of three distinct but interrelated pieces:
1. The Interprocess Communication API, which provides the transport and event notification
mechanism;
2. The Data Server API itself, which provides the capabillity to create and logically organize data
objects; and
3. The Representation and Description Engine (RADE) API, which provides field level access to data
that is formated independent of any underlying machine architecture.

The Interprocess Communication package is used directly by the user to open/close a connection to the
Data Server as well as to receive notification of completed requests. For information on this package, see
the Interprocess Communication IDD. The DS API is used to send service requests to the Data Server via
its provided calls. The RADE API is used to access and check individual data fields within data objects
handled by the DS API. This chapter describes both the DS API and the RADE API.

This document describes only the interface of aclient to the DS. Neither the DS API nor RADE API have a
project-unique identifier, but they are generally referred to collectively asthe client DS API.

3.2 DataTypes

3.21 Event Type

Description:
An event is a (symbolically-named) numeric response by the DS to a service request from aclient (e.g.,
create an object). The primary use for events is in conjunction with the callback mechanism for
handling DS responses (see Chapter 5 for more information on this mechanism).

The DS reserves 1000 event identifiers (in the range -1000 to -1 inclusive) for this purpose. Currently,
it uses only a very small subset of these reserved identifiers. The type ds_event _t yp defines this
Subset.

Location:
#i ncl ude <ds_api . h>

Specification:
typedef enum

nul | _event = -1,
create_event = -2,
destroy_event = -3,
get _event = -4,
set _event = -5
request _key_event = -6,
rel ease_key_event = -7,
subscri be_event = -8,
unsubscri be_event = -9,
create_group_event = -10,
destroy_group_event = -11,
enabl e_group_event = -12,
di sabl e_group_event = -13,
sync_i n_progress = -120,
sync_done_event = -121,

DSIDD

sync_error
buil d_nsg_event
get _group_list
} ds_event typ;

3.2.2 StatusType
Description:

DRAFT Version 1.0

-122,
- 200,
-201

The status type provides return status values for al DS service requests. It normally signifies the result
of the API submitting the request to the DS. It does not represent the final response from the DS for
the request. That responseisreturned viaa DS event and the callback mechanism.

Location:

#i ncl ude <ds_api . h>

Specification:

typedef enum{ DS FAILURE = -1, DS SUCCESS = 0 } ds_status_typ;

3.2.3 Instance Type
Description:

An instance is the result of a create operation for a DS object or group. The instance type provides an
identifier for such an instance. It isan opaque type to the user and is used in DS service calls requiring
an instance as a parameter or in checking for a valid return from a service which returns an instance
(e.g., against the error return value NULL__| NSTANCE).

Location:

#i ncl ude <ds_api . h>

Specification:

typedef void *instance_typ;

3.2.4 Callback Data Type
Description:

The callback data type contains pertinent DS response information about a service request for an object
or agroup. Itispassed to callback routines associated with DS events. The fields of the callback data

type are asfollows:

error_code

obj ect

obj ect _data ptr

user _data_ptr

The response from the DS to the client application regarding the service
request. A value of ERR_NO ERROR indicates that the request was
successfully completed. The file i nt erface_error. h defines the
valid values for thisfield. In Addition each service call enumerates errors
that may be returned.

An instance type identifying the object/group to which the response
pertains.

An indicator of the type of object to which the response pertains. If it is
NULL, then the object identifies a group; otherwise, it identifies a data
object (Seeds get_data ptr).

A pointer to a user-defined block of memory. This is the user_data ptr
parameter originally passed to the ds register_callback service in
associating the callback routine with the DS event.

DSIDD DRAFT Version 1.0

nmsg_ptr Thisfield is only pertinent when the callback routine is an Ada procedure.
It points to an unconstrained array that is defined as a message type to Ada
in the specification file event_msg.ads. Warning: Do not access this
pointer from a nonAda procedure!

L ocation:
#i ncl ude <ds_api . h>
Specification:
typedef struct
i nt error_code;
i nstance_typ obj ect;
voi d *obj ect _data_ptr;
voi d *user _data _ptr;
voi d *nmeg_ptr;

} call back_data_typ;

3.2.5 Callback Type

Description:
This type defines the prototype of a callback function to be associated with a DS event. The function

has two parameters. The first, event, is the DS event which caused the function to be called. The
second, dat a, isacallback datatype, as described above, detailing the DS response for this event.

L ocation:
#i ncl ude <ds_api . h>

Specification:
typedef void (*callback typ) (int event, callback data typ *data);

3.2.6 Generic Pointer
Description:

This type defines a general pointer which can be used for any type of data structure. Its definition
differs depending on whether the user is ANSI C or Classic (K&R) C.

L ocation:
#i ncl ude <ansi _decl s. h>

Specification:
ANSI C: #define PTR void *
ClassicC: #define PTR char *

3.3 Constants
This section describes the general constants used in support of the DS API.

Location:
#i ncl ude <ds_api . h>

Specification
ds_standard_group_name TBD.
NULL_INSTANCE represents an error for those services that return instance_typ.
NO_TRIGGER represents the value for canceling trigger events.

DSIDD DRAFT Version 1.0

DS NODE_NUMBER TBD.

3.4 Error Codes

If an APl service request encounters an error in attempting to perform its designated function, it sets an
error code for the specific error and returns a general failure value to its caller (e.g., DS_FAI LURE for a
service which returns ds_status typ or NULL_| NSTANCE for a service which returnsi nst ance_t yp).
The descriptions of the services which follow indicate the specific error codes set by the services. These
error codes can be accessed viathe get _er r no service, which is part of the Interface Package.

The DSitself can also return an error code as part of its response to a service request. This codeis returned
to the client in the callback data structure, which is passed to the callback routine associated with the DS
response event. If the client does not have a callback associated with the event, it can retrieve the DS-set
error codeviatheds_get _error _code service.

Theinterface_error. h file defines the valid error codes. See Chapter 5 and the Interface Package
IDD for more details.

3.5 Startup and Shutdown Services

3.5.1 Initialization

Description:
The initialization service creates and initializes all the internal data structures for the DS API. [t must

be called before any of the other API services, to establish a connection with the DS.

Location:
#i ncl ude <ds_api . h>

Specification:
ds_status_typ ds_init (void);

Parameters:
None

Returns:
ds_status_typ

DS Response:
NA

Error codes:
ERR_NO_MEMORY Memory could not be allocated for the internal data structures needed
for the interface.

3.5.2 DSReset

Description:
The DS reset service is used to completely initialize the DS. To support “warm” restarts of part or all
of TCS, when the DS is first started, it creates all the objects that reside in the persistent data files,
thereby allowing it to “remember™ data objects on behalf of client applications. The reset service
clears the persistent data files and destroys all the data objects known to the DS. It does not clear the
data object lists that resides in the calling client or in any other connected clients.

DSIDD DRAFT Version 1.0

This function should only be called by a “master client” immediately after the DS starts executing but
before other clients make a connection (as in performing a “cold” start/restart of TCS that is to ignore
any previously existing objects).

Location:
#i ncl ude <ds_adm n. h>

Specification:
ds_status_typ ds _naster _reset (int destination);

Parameters:
destination The DS to which to send the master reset message.

Returns:
ds_status_typ

DS Response:
NA

Error Codes:

ERR NOINT The interface has not been initialized.

ERR_UNKNOWN_NODE The destination does not exist.

ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.

3.5.3 Client Reset

Description:
The client reset service reinitializes the internal data structures for the DS API (i.e., destroys all objects

and groups that have been created). This service could be used as part of error recovery to clear the DS
API when it loses contact with the DS. In some cases, a client reset may be preferred to attempting a
synchronization (as described in the next section). Optionally, if the DS is still available, this service
can send a reset message to the DS requesting that all groups and objects belonging to the client
application be destroyed in the DS. In response to this message, the DS will release all the write keys
held by the client application, remove the client application from all subscription lists and destroy all
objects that have been created by the client application. This reset does not affect other client
applications other than another client application may receive a write key as a result of this reset
message.

Location:
#i ncl ude <ds_api . h>

Specification:
ds_status_typ ds_reset (int destination, int reset_ds);

Parameters:
desti nation The DS to which to send the client reset message
reset_ds A switch for sending a message to the DS to destroy all groups and
objects belonging to the client application. If it is 0, do not send the
client reset message to the DS; otherwise, send it.
Returns:

ds_status_typ

DSIDD DRAFT Version 1.0

DS Response:
NA
Error Codes:
ERR NOINT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.

3.5.4 Synchronization

Description:

The synchronization service assists in error recovery when a DS unexpectedly terminates. Sync is used
to transmit all group and object information for a client to a new DS process. It prevents the client
from having to reset the APl and recreate al of its groups, objects etc.. Sync aso resubmits any
pending requests on behalf of the client (e.g., arequest for awrite key). If the ds_sync request returns
successfully (i.e., it returns DS_SUCCESS), the client must wait for an event response, either
sync_done_event orsync_error. sync_done_event indicatesthat the API isdone sending
all of the group and object information to the DS and the synchronization process is completed.
sync_error indicates that the DS could not perform an operation which the API requested. During
the synchronization process, the client may receive one or more Ssync_i n_pr ogr ess events. These
eventsindicate to the client that the processis proceeding normally.

L ocation:
#i ncl ude <ds_api . h>

Specification:

ds_status_typ ds_sync (int destination);

Parameters:
destination The DS to which to send the synchronization messages.

Returns:
ds_status_typ

DS Response:
Sync_i n_progress
sync_done_event

sync_error
Error Codes:
ERR NOINT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.

3.5.5 Shutdown

Description:
The shutdown service commands the DS to terminate in an orderly manner. It is called by a “master
client.” The DS, upon receipt of this message, closes the persistent data files, closes the data log file,
closes all client connections and then terminates itself. For a complete orderly shutdown of the DS and
any connected client, the 'master client' should inform the peer clients that the DS will be shut down.
Each peer client should then close its connection to the DS or should ignore the error message that
results from the DS closing the connection to the client.

DSIDD DRAFT Version 1.0

L ocation:
#i ncl ude <ds_adm n. h>

Specification:

ds_status_typ ds_shutdown (int destination);

Parameters:
destination The DS to which to send the shutdown message.

Returns:
ds_status_typ

DS Response:
NA
Error Codes:
ERR NOINT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.

3.6 Group Services

Groups provide a mechanism for associating data objects that have some common characteristic (e.g.,
represent a particular Air Vehicle for a particular mission). The objects in the group are the children of the
group, and the group is the parent of the objects it contains. Note: Objects can be arranged in parent-child
trees themselves, so the actual direct parent of a given object may be another object; however, the top-level
parent of that object will be the group which contains the root object of the parent-child tree containing the
object.

The standard group is a predefined group in the DS. It is available for containing objects that do not “fit”
into any user-defined group.

3.6.1 Create Group

Description:
The create group service creates a group with a given name for the client and registers that group with

the DS.

Location:
#i ncl ude <ds_api . h>

Specification:

i nstance_typ ds_create_group (int desti nati on,
char * group_nane,
i nt enabl e);
Parameters:
desti nation The DS to which to send the message for registering the group.
group_nane The name of the group to create.
enabl e A switch for having the group enabled or disabled when created. If it
is 0, the group is disabled on creation; otherwise, the group is enabled
on creation.
Returns:

i nstance_typ

DSIDD DRAFT Version 1.0

DS Response:
creat e_group_event
Error Codes:
ERR NO INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECT! ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOMN_ERROR A catchall for unanticipated errors.
ERR_NO_MEMORY Memory could not be allocated to create the group.
ERR_PARAMETER A group with the given name already exists for this client.

3.6.2 Destroy Group

Description:
The destroy group service does the following:
1. Destroysthe group and any child objects of the group for the DS API, and
2. Sends amessage to the DS requesting that the group be destroyed.

The DS sends only one response for this request, i.e., for the destroy action on the group itself. It does
not send responses for any child objects that it destroys as aresult of destroying the group.

Location:
#i ncl ude <ds_api . h>

Specification:
ds_status_typ ds_destroy_group (instance_typ group);

Parameters:
group An identifier for agroup.

Returns:
ds_status_typ

DS Response:
destroy_group_event
Error Codes:

ERR NOINT Theinterface has not been initialized.

ERR_UNKNOWN_NCDE The destination does not exist.

ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.

ERR_UNKNOWN_ERROR A catchall for unanticipated errors.

ERR_PARANMETER If group is the standard group; or if there is a pending create or
destroy response for gr oup (i.e., a create/destroy message has been
sent to the DS but the DS has not replied with the corresponding
event yet.)

ERR_UNKNOWN_CGROUP gr oup does not reference valid group.

3.6.3 Enable Group

Description:
The enable group service enables the receipt of subscriptions from objects that are members of the
selected group. Immediately upon receipt of the enable group request, the DS sends the issuing client
all objects from the group that have changed while the group has been disabled.

10

DSIDD

L ocation:
#i ncl ude <ds_api . h>

Specification:

DRAFT Version 1.0

ds_status_typ ds_enable group (instance_typ group);

Parameters:
group

Returns:
ds_status_typ

DS Response:
enabl e_group_event

subscri be_event

Error Codes:
ERR NOINT
ERR_UNKNOAN_NODE
ERR_CONNECTI ON_RESET
ERR_UNKNOWN_ ERROR
ERR_UNKNOWN_GROUP
ERR _PARAMETER

3.6.4 Disable Group
Description:

Anidentifier for a group.

If the DS sends any outstanding subscriptions as a result of a group
being enabled, the client will receive a subscription event for each
outstanding subscription.

The interface has not been initialized.

The destination does not exist.

The connection was closed by a peer during message transmission.

A catchal for unanticipated errors.

The group does not reference avalid group.

The group has a pending create or destroy response (i.e, a
create/destroy message has been sent to the DS but the DS has not
replied with the corresponding event yet.)

The disable group service disables the receipt of subscriptions from objects that are members of the
group identified by the group parameter. Immediately upon receipt of the disable group request, the DS
marks the group as inactive for the client and stop sending the client subscriptions for objects that
belong to the group. If any of the group objects that the client has subscribed to change while the group
is disabled, the DS marks those objects as changed for subsequent forwarding to the client if the group

isre-enabled at alater time.

L ocation:
#i ncl ude <ds_api . h>

Specification:

ds_status_typ ds_disable group (instance_typ group);

Parameters:
group

Returns:
ds_status_typ

DS Response:
di sabl e_group_event

Error Codes:
ERRNO INT
ERR_UNKNOWN_NCDE

Anidentifier for a group.

The interface has not been initialized.
The destination does not exist.

11

DSIDD

DRAFT Version 1.0

ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.

ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_UNKNOWN_CGROUP The group does not reference a valid group.
ERR_PARANMETER The group has a pending create or destroy response (i.e, a

create/destroy message has been sent to the DS but the DS has not
replied with the corresponding event yet.)

3.6.5 Standard Group

Description:
The standard group service returns the instance identifier for the predefined standard group.

Location:
#i ncl ude <ds_api . h>

Specification:

i nstance_typ ds_standard_group (int destination);

Parameters:
desti nation The DS for which to retrieve the standard group identifier.

Returns:
i nstance_typ

DS Response:
NA

Error Codes:
ERR NO INT Theinterface has not been initialized.
ERR_PARAMETER

3.6.6 Find Object By Name

Description:
The find object by name service returns the instance of a data object with the given name if that object

is contained in the given group.

Location:
#i ncl ude <ds_api . h>

Specification:
i nstance_typ ds_find_object by name (instance_typ group,
const char * obj ect _nane);

Parameters:
group The group to search for the object.
obj ect _nane The name of the object to find.

Returns:
i nstance_typ

DS Response:
NA

Error Codes:
ERR _PARANMETER If gr oup does not reference avalid group.

12

DSIDD DRAFT Version 1.0

3.6.7 Find Group By Name

Description:
The find group by name service returns the instance of the group with the given name in the designated
DS.

Location:
#i ncl ude <ds_api . h>

Specification:
i nstance_typ ds_find_group_by name (int desti nati on,
const char *group_nane) ;
Parameters:
desti nation The DS in which to find the group.
group_nane The name of the group to find.
Returns:

i nstance_typ

DS Response:
NA

Error Codes:
NA

3.7 Object Services

From the DS API point of view, an object is a collection of data that have meaning as a unit (e.g., flight
status for an Air Vehicle). Each object created by a client must belong to a group, athough different
instances of the same object can be defined in different groups. Objects can also be arranged in hierarchical
trees, with one object serving as parent for one or more child objects on the next level away from the root
object of the tree.

The DS itself does not care about the data within an object. To the DS, the objects are ssimply buckets of
specified sizes. These buckets can be defined either by specifying the size of the bucket or by referencing a
data-object schema. The schema contains al of the information necessary for creating the object and
populating it with default data. It also provides a means of accessing individual datum fields within the
object viaDS API services (see section 3.X).

Note: These services apply only to objects, i.e., they cannot be applied to an instance of a group. Groups
are collections of objects and do not contain data themselves, so it does not make sense to perform
operations such as getting a write key, setting, getting, etc., on them.

3.7.1 Create Object

Description:
The create object service provides an interface for creating a data object. It accepts either a size for the
object or an option specifying the object to be a RADE object. |If the requester designates the object as
a RADE object, the service ignores the size parameter. In this case, al of the information need for
object creation comes from the object schema, which the DS can access via the object name. The DS
also makes the schema available to the DS API for use by the data accessing functions.

The create object service creates an object as follows:

1. Ensuresthat the size parameter > 0 (unlessthisisa RADE_OBJECT create),
2. Verifiesthat the parent has been created and has received a create response from the DS,

13

DSIDD

DRAFT

Version 1.0

3. Verifies that an object by the same name does not exist in the group to which the parent

belongs,

4. Allocates memory for the object, and
5. Sends a message to the DS requesting the creation of the object.

L ocation:
#i ncl ude <ds_api . h>

Specification:

instance_typ ds_create_object (int

Parameters:
destination
par ent

obj ect _nane
size
options

desti nati on,

i nstance_typ parent,

char * obj ect _nane,
short si ze,

i nt options);

The DS to which to send the message.
The parent of the object being created; this may be either a group or

an object.

The name of the object to create.
The size of the abject to be created.
A hit field constructed by ORing option values from the following

list:

NO_OP

PERSI STENT_CP

LOG_DATA_OP

VRl TE_KEY_OP

14

This should be used in the absence of any other
option.

This object attribute indicates to the DS that
when a client 'sets' the object a copy of the
object iswritten to the persistent storagefile.

This object attribute indicates to the DS that
when a client 'sets’ the object a copy of the
object iswritten to the data log file.

This is a request for the write key. This
eliminates the need for a separate write key AP
call. When the client receives the key, the DS
will respond to it with a request_write key
event. Alternatively, when the client receives
the create response from the DS, it can cal
ds received write key to determine if it was
successful in obtaining the key.

DSIDD

Returns:
i nstance_typ

DS Response:
create_event

request _key_ event
Subscri be_event

Cet _event

Error Codes:
ERR NOINT
ERR_UNKNOAN NODE
ERR_CONNECTI ON_RESET
ERR_UNKNOMN ERROR
ERR_PARANMETER

DRAFT Version 1.0

SUBSCRI BE_COP Thisisarequest by the client to be added to the
subscription list for the object. This eliminates
the need for a separate call to the subscribe API
cal. If thereis valid data for the object in the
DS, the DS will send a copy of the object to the
client and respond to the client with a
subscribe_event. Also, when the client receives
the create response from the DS, it can call
ds received valid data to determine if the DS
sent object data along with the create response.
If ds received valid data returns true, then the
clients copy of the data is current with the copy
held by the DS.

CET_DATA OP This is a request by the client to get a copy of
the object data if the copy held by the is valid
(i.e., another client has 'set’ the object). This
eliminates the need for a separate call to the get
API call. If the DS sends a copy of the object to
the client, it also sends a get_event along with
it. Also, when the client receives the create
response from the DS, it can cdl
ds received valid data to determine if the DS
sent object data along with the create response.
If ds received valid data returns true, the
clients copy of the data is current with the copy
held by the DS. This option is especially useful
for retrieving data for an object that was created
with the PERSISTENT_OP attribute during a
previous DS execution.

RADE_OBJECT This is a request to the DS to create the object
via a schema. The size parameter has no
meaning when this option is used.

When the client receives the write key, if the create included option
VRl TE_KEY_OP.

When the client receives an initial copy of the object, if the create
included option SUBSCRI BE_OP.

When the client receives a valid copy of the object, if the create
included option GET_DATA_OP.

The interface has not been initialized.

The destination does not exist.

The connection was closed by a peer during message transmission.
A catchall for unanticipated errors.

size is invdid, i.e, greater than MAXSHORT as defined in
<val ues. h>.

15

DSIDD DRAFT Version 1.0

ERR DUPLI CATE The object already has been created as a child of parent.

ERR _NO_ MEMORY Memory could not be allocated for the object.

ERR_NO_RESPONSE The client has not received the response from the service call to
create parent.

3.7.2 Destroy Object

Description:
The destroy object service destroys an object and its children as follows:
1. Verifiesthat the object isvalid (has been created),
2. Verifies that the object does not have a pending destroy_event (i.e., the client has not already
reguested the object be destroyed, either directly or as a child of another object),
3. Verifiesthat the object does not have a pending create_event,
4. Sendsadestroy request to the DS, and
5. Marksthe object and its children as destroyed.
The object and its children are not actually destroyed in the DS API until the client receives the destroy
response. When this happens, the API performs a recursive destroy of all of these objects.

L ocation:
#i ncl ude <ds_api . h>

Specification:
ds_status_typ ds_destroy object (instance_typ object);

Parameters:
obj ect Theinstance of an object to destroy.

Returns:
ds_status_typ

DS Response:
destroy_event One event for each object actually destroyed by the service (the input
object and each of its children).
Error Codes:
ERR NOINT Theinterface has not been initialized.
ERR_UNKNOWN_NCDE The destination does not exist.
ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_PARAMETER The object has a pending create or destroy response (the destroy
response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.
3.7.3 Set Object
Description:
The set object service sends the client copy of a data object to the DS, provided that the client holds the
write key for the data object.
L ocation:
#i ncl ude <ds_api . h>
Specification:
ds_status_typ ds_set (instance_typ obj ect,
i nt respond);

16

DSIDD

Parameters:
obj ect
respond

Returns:
ds_status_typ

DS Response:
set _event

Error Codes:
ERR NOINT
ERR _UNKNOWN NODE
ERR_CONNECTI ON_RESET
ERR_UNKNOWN ERROR
ERR_UNKNOWN_OBJECT
ERR _NO_ RESPONSE

DRAFT Version 1.0

The instance of an object to set.
If nonzero, the DS is to respond to the client upon accomplishing the
Set.

If the client has asked the DS to respond to this service request.

The interface has not been initialized.

The destination does not exist.

The connection was closed by a peer during message transmission.

A catchall for unanticipated errors.

The object has not been created.

The object has a pending create or destroy response (the destroy
response can be either from itself or its parent).

ERR WRI TE_KEY_NOT_HELD The client does not hold the write key for the data object.

3.7.4 Get Object
Description:

The get object service requests that the DS send its copy of the data object to the client. The DS will
fulfill this request only if the data object has been 'set’.

Location:
#i ncl ude <ds_api . h>

Specification:
ds_status_typ ds_get

Parameters:
obj ect

Returns:
ds_status_typ

DS Response:
get _event

Error Codes:
ERR NOINT
ERR_UNKNOAN NODE
ERR_CONNECTI ON_RESET
ERR_UNKNOMWN ERROR
ERR_NO RESPONSE

ERR_UNKNOWN_OBJECT

i nstance_typ object);

Theinstance of an object to get.

The interface has not been initialized.

The destination does not exist.

The connection was closed by a peer during message transmission.

A catchall for unanticipated errors.

The object has a pending create or destroy response (the destroy
response can be either from itself or its parent).

The object has not been created.

17

DSIDD DRAFT Version 1.0

3.7.5 Request Key for Object

Description:
To be able to set the client copy of an object instance into the DS, the client must hold the write key for
that object instance. There are two way for the client to get this key, by requesting it as an option when
creating the object instance or viathis service.

The request key for object service requests the write key for a data object from the DS. The DS will
fulfill the request when the key is available (if not immediately). If the key is not available, the client is
put on awaiting list for the key. When the key is released by the holding client, the next client on the
waiting list will be sent the key. If the client already holds the key for a data object, it is not an error for
the client to request the key again. In this case, the DS will simply send a success response.

L ocation:
#i ncl ude <ds_api . h>

Specification:
ds_status_type ds_request_key (instance_typ object);
Parameters:
obj ect The instance of an object for which the client is requesting the write
key.
Returns:
ds_status_typ
DS Response:
request _key_event
Error Codes:
ERR NOINT Theinterface has not been initialized.
ERR_UNKNOWN_NCDE The destination does not exist.
ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy
response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

3.7.6 Release Key for Object
Description:

The release key for object service requests the DS to release the client’s write key for a data object and

make it available for other clients to use (i.e., allow another client to set the data object).

Location:
#i ncl ude <ds_api . h>

Specification:
ds_status_typ ds _rel ease_key (instance_typ obj ect,

i nt respond);
Parameters:
obj ect The instance of an object for which the DS is to release the write key.
respond If nonzero, the DS is to respond to the client upon releasing the key.

18

DSIDD DRAFT Version 1.0
Returns:
ds_status_typ
DS Response:
rel ease_key_event If the client has asked the DS to respond to this service request.
Error Codes:
ERR NOINT Theinterface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy
response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

3.7.7 Subscribeto Object

Description:
The subscribe to object service requests that the DS add the client to the subscription list for the object.
Then, in response to a set request for the data object, the DS will send each client on the subscription
list a current copy of the data object. Also, in response to the subscription request, the DS will send the
requesting client a copy of the data object, if the data object contains valid data (i.e., if a client has set
the object).

L ocation:
#i ncl ude <ds_api . h>

Specification:

ds_status_typ ds_subscribe (instance_typ object);

Parameters:
obj ect The instance of an object to which the client wishes to subscribe.

Returns:
ds_status_typ

DS Response:
subscri be_event Each time the DS sends a copy of the data object to the client.
Error Codes:
ERR NOINT Theinterface has not been initialized.
ERR_UNKNOWN_NCDE The destination does not exist.
ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy
response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

3.7.8 Unsubscribeto Object

Description:
The unsubscribe to object service requests that the DS remove the client from the subscription list for

the object.

L ocation:
#i ncl ude <ds_api . h>

19

DSIDD DRAFT Version 1.0

Specification:

ds_status_typ ds_unsubscribe (instance_typ obj ect,

i nt respond);

Parameters:

obj ect Theinstance of an object to subscribe to.

respond If nonzero, the DS is to respond to the client upon removing the

object subscription.

Returns:

ds_status_typ

DS Response:
unsubscri be_event If the client has asked the DS to respond to this service request.
Error Codes:
ERR NOINT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTI ON_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy

response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

3.7.9 Get Object Group

Description:
The get object group service returns the identifier for the group to which the input object belongs.

Location:
#i ncl ude <ds_api . h>

Specification:

i nstance_typ ds_get _group (instance_typ object);

Parameters:
obj ect Theinstance of an object for which to get the group.

Returns:
The group to which the object belongsiif the object is valid; otherwise, NULL_| NSTANCE.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object has not been created.
ERR_NO ERROR The object isavalid object.

3.7.10 Get Object Parent

Description:
The get object parent service returns the instance identifier for the parent of the input object. This
parent may be either a group or another object.

20

DSIDD DRAFT Version 1.0

L ocation:
#i ncl ude <ds_api . h>

Specification:

instance_typ ds_get parent (instance_typ object);

Parameters:
obj ect The instance of an object for which to get the parent.

Returns:
The parent of the object if object isavalid identifier; otherwise, NULL_| NSTANCE.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object has not been created.
ERR _NO ERROR The object isavalid object.

3.7.11 Get Object Data Pointer

Description:
The get object data pointer service returns a pointer to the data associated with the object. This service
produces a useful result only if the client created the object directly, not via a schema. In other words,
this service does not return any client-usable information for an object created with the
RADE_OBJECT option. It does not set any error code to indicate this condition; rather, it is the client’s
responsibility to know which objects it created directly and which it creatRARE OBJECTSs.

Location:
#i ncl ude <ds_api . h>

Specification:
PTR ds_get _data ptr (instance_typ object);

Parameters:
object the instance of an object for which to get the data pointer.

Returns:
A pointer to the data associated with the object, if object is a valid identifier; otheWwide,
Note: The pointer returned for an object created withRABE_OBJECT option does not access the
actual object data, so it is of no use to a client!

DS Response:

NA
Error Codes:
ERR_UNKNOWN_OBJECT The object has not been created.
ERR _NO ERROR The object is a valid object.

3.7.12 Get Object Size

Description:
The get object size service returns the size of the data block associated with the object. This service
produces a useful result only if the client created the object directly, not via a schema. In other words,
this service does not return any client-usable information for an object created with the

21

DSIDD DRAFT Version 1.0

RADE_OBJECT option. It does not set any error code to indicate this condition; rather, it is the client’s
responsibility to know which objects it created directly and which it creatBdRE OBJECTSs.

Location:
#i ncl ude <ds_api . h>

Specification:
int ds_get object_size (instance_typ object);

Parameters:
obj ect The instance of an object for which to get the data block size.

Returns:
The size of the object if object is a valid identifier; otherwise, -1.
Note: The size returned for an object created with the RADE_OBJECT option includes more than just
the object data block, so it is of no use to a client!

DS Response:
NA

Error Codes:
None

3.7.13 Object Received Valid Data

Description:
The object received valid data service allows the client to determine if the local object has received

data from the DS at any time during its existence (i.e., from a subscription, an expligiet
request, or thds_cr eat e_obj ect GET_DATA_OP option).

Location:
#i ncl ude <ds_api . h>

Specification:
int ds_received valid data (instance_typ object);

Parameters:
obj ect The instance of an object to query.

Returns:
A nonzero value if object is a valid identifier and the local object has received data from the DS;
otherwise, 0.

DS Response:
NA

Error Codes:

ERR_UNKNOWN_OBJECT The object has not been created.
ERR_NO ERROR The object is a valid object.

22

DSIDD DRAFT Version 1.0

3.7.14 Object Received WriteKey

Description:
The object received write key service allows the client to determine if the local object has received the
write key from the DS (either from an explicit ds_request key request or from the
ds_creat e_obj ect WRI TE_KEY_OP option).

L ocation:
#i ncl ude <ds_api . h>

Specification:
int ds_received wite_key (instance_typ object);

Parameters:
obj ect Theinstance of an object to query.

Returns:
A nonzero value if object is avalid identifier and the local object has received the write key from the
DS; otherwise, 0.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object has not been created.
ERR _NO ERROR The object isavalid object.

3.8 Common Services

3.8.1 Register Callback

Description:

The register callback service associates a client function with a DS event for an object or group. (See
Chapter 5 for more information on the use of callbacks and the event handling mechanism.) If the
client does not wish to provide a function, it should use one of the two predefined functions
default_func or i gnore_func. The default _func is a directive to the DS API to pass event
notification to the client through the normal event notification mechanism. Thei gnore_func isa
directive to the DS API not to pass the event notification to the client. For both the def aul t _f unc
and thei gnor e_f unc the API does all processing for the event as normal, including the functionality
of the set trigger API call.

L ocation:
#i ncl ude <ds_api . h>

Specification:
ds_status_typ ds_register_callback (instance_typ i nstance,
ds_event _typ event,
PTR user_data ptr,
cal | back_typ routine);

Parameters:
i nstance An object or group for which to register a callback
event One of the event identifiers (see Section 3.2.1)
user_data ptr A pointer to a user-defined block of data

23

DSIDD DRAFT Version 1.0

routine A pointer to a function to be called when the event arrives from the
DS. If the client does not wish to provide a function, it should use
one of the two predefined functions:

defaul t _func This function parameter is a directive to the DS
API to pass the event natification to the client
through the normal event handling mechanism.

i gnore_func This function parameter is a directive to the DS
APl not to pass the event notification to the
client.
Returns:
ds_status_typ

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.
ERR_PARANMETER If event is not one of the event identifiers.

3.8.2 Get Name

Description:
The get name service returns a pointer to the name corresponding to the input object/group instance
identifier.

Location:
#i ncl ude <ds_api . h>

Specification:

const char *ds_get _name (instance_typ instance);

Parameters:
i nstance An object or group for which to get the name.

Returns:
A pointer to the name of the object/group if instanceis avalid identifier; otherwise, NULL.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.

3.8.3 Get Error Code

Description:
The get error code service returns the error code that has been returned most recently from the DS
regarding the object/group referenced. It is primarily for use by client that is has not associated a
callback routine with one or more DS events.

L ocation:
#i ncl ude <ds_api . h>

24

DSIDD DRAFT Version 1.0

Specification:

int ds_get _error_code (instance_typ instance);

Parameters:
i nstance An object or group for which to get the error code.

Returns:
An error code if instance is avalid identifier; otherwise, -1.

DS Response:
NA

Error Codes:
None

3.8.4 Set User Data

Description:
The set user data service allows a client to associate data with an instance of an object or group. The
service does not require any particular form for the data. Its form and use are strictly client-
determined. Note: One set of user data is available for setting for each object or group. Thisis not the
same user data associated with an event-specific callback for an object or group. Each of these
calbacks can have a different user data item (specified as user_data ptr in the
ds_regi ster_cal | back service call).

L ocation:
#i ncl ude <ds_api . h>

Specification:
int ds_set_user_data (instance_typ i nstance,
PTR data);
Parameters:
i nstance An object or group for which to set the user data.
dat a The user data to associate with the instance.
Returns:

0if the datais successfully associated with the instance; -1 otherwise.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created
ERR _NO ERROR The data is successfully associated with the object or group.

3.8.5 Get User Data

Description:
The get user data service allows a client to retrieve data that was previously associated with an instance
of an object or group by the set user data service.

L ocation:
#i ncl ude <ds_api . h>

25

DSIDD DRAFT Version 1.0

Specification:

PTR ds_get _user_data (instance_typ instance);

Parameters:
i nstance An object or group for which to get the user data.

Returns:
A pointer to the user dataiif instance isavalid identifier; otherwise, NULL.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.
ERR _NO ERROR The data pointer is successfully returned.

3.8.6 Set Trigger Event

Description:
The set trigger service provides a mechanism for associating a DS event with an Object Manager event.
Warning: Thisserviceis provided for Adaclients only. It should not be called from clients written in
C.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_set _trigger_event (instance_typ i nstance,
ds_event _typ event,

i nt code) ;
Parameters:
i nstance An instance of an object or group.
event One of the event identifiers (see Section 3.2.1).
code The code to generate for the Object Manager when the event occurs.
Returns:
ds_status_typ
DS Response:
NA
Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.
ERR PARAMETER If event is not one of the event identifiers.
ERR_NO_ERROR If the trigger code set is successful.

3.8.7 Get Trigger Event

Description:
The get trigger service returns the external event that is generated when the DS event for the
object/group referenced arrives. Warning: This service is provided for Adaclients only. It should not
be called from clients written in C.

26

DSIDD DRAFT Version 1.0

L ocation:
#i ncl ude <ds_api . h>

Specification:
int ds_get trigger_event (instance_typ i nstance,
ds_event typ event);

Parameters:
i nstance An instance of an object or group.
event One of the event identifiers.
Returns:

An event identifier (i.e., the code for the set trigger event).

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.
ERR_PARANMETER If event is not one of the event identifiers.
ERR_NO_ERROR If atrigger codeisreturned (including NO_TRI GGER).

3.9 Miscellaneous Services

3.9.1 Get Recent Group

Description:
The get recent group service returns the group instance that has received the most recently delivered

group-related event from the DS.

Location:
#i ncl ude <ds_api . h>

Specification:

i nstance_typ ds_get _recent_group (void);

Parameters:
None

Returns:
The group from the most recent DS group-related event; NULL_INSTANCE if the APl has not yet
received a group-related DS event.

DS Response:
NA

Error Codes:
None

3.9.2 Get Recent Object
Description:

The get recent object service returns the object instance that has received the most recently delivered
object-related event from the DS.

27

DSIDD DRAFT Version 1.0

L ocation:
#i ncl ude <ds_api . h>

Specification:

instance_typ ds_get recent_object (void);

Parameters:
None

Returns:

The object from the most recent DS object-related event; NULL_| NSTANCE if the API has not yet
received an object-related DS event.

DS Response:
NA

Error Codes:
None

3.10 Representation and Description Engine (RADE)
TBD

28

DSIDD DRAFT Version 1.0

4. Requirements Traceability
This section has been tailored out.

29

DSIDD DRAFT Version 1.0

5. Notes

The sections of this chapter provide background information for understanding the general operation of the
DS, the use of the API, and the relationship of the DS API to other APIswhich support DS use.

5.1 Overview

51.1 Genera

The primary function of the DS is to provide a mechanism for the distribution of data between clients. The
DSisimplemented as a client-server architecture that provides a central repository of data for a distributed
system. It provides functions to alow a client to send and receive data, store data for retrieval during a
subsequent execution (persistent storage) and log data (for later analysis). It also provides the developer
with debugging capability from the unit level through system level.

The DS supports a very small command set for data manipulation. This command set allows clients to
create/destroy data object, read/write data objects, and subscribe to changesin data objects. It aso provides
for grouping of related data objects. Data objects in the APl and DS do not have structure; they are simply
block of data. The DS sends and receives these blocks of data without the need to know their content. It is
the client that gives meaning to the contents of data objects.

Persistent storage is a mechanism by which the DS and clients can recover from an unexpected system
shutdown (i.e., a client process or DS terminates abnormally). When the client creates data objects, it can

set the persistence attribute. This attribute informs the DS that any changes (writes) to the data object

should also be written to a persistent storage file. For example, a client could create a data object that

contains information describing the state in which the client is executing. If for some unforeseen reason the

client terminates, upon restart, it could reconnect to the DS and retrieve this “state” object to determine its
state prior to the unexpected termination. This method is not foolproof, but it does provide a mechanism by
which clients can recover from system faults with a reasonable degree of certainty.

Data logging is a mechanism clients can use to record data for analysis during/after execution. The log is a
file containing a time ordered set of selected objects. Whenever any of the selected objects is set into the
DS (via a ds_set service request), that object is time-stamped and written into the log file. A client can
select an object for logging by setting the LOG_DATA_OP when it creates the object.

5.1.2 Groups

TBD

5.1.3 Objects
TBD

5.1.4 Normal Event Handling
TBD

5.2 Theory of Operation
TBD

5.2.1 TheEvent Model
TBD

30

DSIDD DRAFT

5.2.2 Object Writer
TBD

5.2.3 Object Reader
TBD

5.2.4 Object Subscriber
TBD

5.3 The Subscription (Automatic Data Forwarding)
TBD

31

Version 1.0

DSIDD

6. Acronyms

API
CsC
DS
IDD
RADE
TCS

DRAFT

Application Program Interface
Computer Software Component

Data Server

Interface Design Description
Representation and Description Engine
Tactical Control System

32

Version 1.0

